The Real FT8, JT65, and JT9 Signal - to - Noise Ratio Revealed

Jim Frazier, KC5RUO kc5ruo@arrl.net

Introduction

- You may receive a negative FT8, JT65, or JT9 digital HF communications mode Signal-to-Noise Ratio (SNR) report in the range of -27 dB to -1dB
 Recall, a negative SNR report implies the signal is below the noise floor
- In reality, this is not the case, the Frequency Shift Key (FSK) tones are well above the noise floor
- Received FT8, JT65 and JT9 signal reports are actually referenced to a much wider noise bandwidth (2500 Hz) than the actual detection bandwidth required to successfully decode the digital data represented by the received FSK tone.
- The smaller detection bandwidth drives the actual SNR, which along with forward-error-correction, allows error-free message decoding
- The purpose of this presentation
 - To demonstrate the SNR increases dramatically as we home-in on the detection bandwidth of a single FSK tone

What is Signal-to-Noise Ratio (S/N)

- SNR is typically measured and reported in decibels (dB)
- S = received signal power as it is received by the distant end
 - It is the only variable in this SNR equation you can actually control
- How do you influence the received signal power at the distant end?
 - Increasing/decreasing the transmit power
 - Using a higher gain antenna, etc.
 - You are in control of the Effective Radiated Power (ERP)
- N = noise power as it is received by the distant end
 - Solely owned by the operator on the distant end, the transmitting station has no influence, whatsoever, on the received noise power at the distant end
- Noise comes from various sources:
 - Atmospheric Noise (culmination of man-made noise and noise produced by lightning around the world)
 - Cosmic Noise (noise generated outside the earth's atmosphere)
 - Self-generated receiver noise

What is the Detection Bandwidth, and the JT65 Waveform

description bullets on next slide

The JT65 Waveform Description

- The JT65 waveform gets its name from the inventor Joe Taylor and the 65 refers to fact that it utilizes a 64-ary FSK tones waveform with one extra FSK tone maintaining time and frequency synchronization
- Hence, 64 FSK tones, which carry the message data, plus 1 synchronization tone = 65
- The FSK sync tone is transmitted twice as frequently as the FSK data tones during a message transmission
- Each of the 64 FSK tones represents a 6 bit encoded message symbol
- The JT65 signaling waveform only occupies a transmission bandwidth of approximately
 178 Hz
- And even more significantly, each FSK signaling tone, that is being transmitted only occupies 2.692 Hz the detection bandwidth
- It is only the noise that exists in that super small bandwidth of 2.692 Hz that drives the real SNR that determines the success of demodulating and decoding the text message
- The detection SNR is called the

FSK Symbol - to - Noise Power Density Ratio

The Test Configuration

Used to demonstrate as we reduce the **Received Signal Report referenced 2500 Hz Noise Bandwidth** to that which approaches the **very small Detection Bandwidth** the **SNR increases dramatically** (description on next slide)

Test Configuration Description

- •To demonstrate this, I put together a JT65 transmission and receiver system
- •The PC is running WSJT-X software to generate a CQ KC5RUO DM65 message
- •The **encoded message symbols** are sent via the SignaLink USB interface to the transceiver (YAESU FT-891) as FSK tones
- •The FSK tones modulate a 20 meter 14.076 MHz carrier which is transmitted out and received by this SDRPlay Radio Spectrum Processor (RSP1) receiver at a realistic signal power level that you might receive at home via your antenna system.
- •To get the signal down to a S1 S-unit level of approximately -121 dBm I use a series of attenuators you see here. 115 dB of attenuation
- •I am using the **SDRuno Software Defined Radio (SDR) signal processing software and receiver**, and in this *presentation* we are going to **focus on**:
- -The SP2, passband scope display
- -We'll be looking at the Signal Processing display and the waterfall
- -The RMS Power Level received power level measured in the SP2 defined bandwidth
- •Which is a measure of the signal and the noise within the SP2 defined bandwidth
- -The SNR, derived from the signal and noise power measured in the SP2 defined bandwidth
 - •Note: The SDRuno measured SNR is actually (S+N)/N
- •To simulate received noise and set the received noise power, I use a Rigol DG4162 waveform function generator to produce the Additive White Gaussian Noise (AWGN)
- •The Mini-circuits combiner brings both the signal generated by the transceiver and noise to the RSP1 receiver

-

SDRuno Screen Shot RSP1 Receiver Noise Floor SP2 passband = 2500 Hz

- Receiver Noise Bandwidth = 2500 Hz
- RSP1 Receiver Noise Floor ≈ -130 dBm (9 dB below an S1 unit level)
- N_{PB} = Noise Power derived from the SP2 passband
- $N_{PB} \approx -130 dBm$ as measured across a receiver noise bandwidth = 2500 Hz

SDRuno Screen Shot JT65 Signal & RSP1 Receiver Noise Floor SP2 passband = 2500 Hz

- Receiver Noise Bandwidth = 2500 Hz
- S_{PB} = Signal Power derived from the SP2 passband
- $S_{PB} \approx -121 \text{ dBm} = S1 \text{ unit level}$
- RSP1 Receiver Noise Floor N_{PB} ≈ -130dBm as measured across a receiver noise bandwidth = 2500 Hz
- SNR ≈ 9 dB,
- Note:
 - SDRuno actual measured RMS power = $(S_{PB} + N_{PB})$
 - And, SDRuno actual measured SNR = $(S_{PB} + N_{PB})/N_{PB}$
 - But, the JT65 signal level is so much larger than the Rx noise floor the measured RMS power and SNR are dominated by S_{PB}

SETT. -80

-95

-100 -105

-110

-115 -120

-125

-130

-135

-140

-145

-150

SP

SDRuno Screen Shot Received Additive White Gaussian Noise

- SP2 passband = 2500 Hz
- Receiver Noise Bandwidth = 2500 Hz
- AWGN power = $N_{PB} \approx -115 \text{ dBm} = S2 \text{ unit level}$
- As measured across a receiver noise bandwidth = 2500 Hz

MA SDRuno Main	SETT. RDSW EXW SDRuno RX CONTROL RSYN1 MCTR	
OPT REC PANEL Final SR: 2000000 IFBW: 1.536MHz (ZIF)		S 1 3 5 7 9 +20 +40 +40
Gain: 79.1dB	MODE AM SAM FM CW DSB LSB USB DIGIT	TAL
ADD VRX	VFO - QM FM MODE CW OP FILTER NB NOT VFO A A > B NFM MFM CWPK 1800 2200 NBW NCH	сн 7 8 9 160 80 40
SR (MHz) DEC LO LOCK	VFO B B > A WFM SWFM ZAP 2800 3000 NBN NCH	
LNA AGC 2.0 1 IF Gain STOP	QMS QMR CWAFC NR NBOFF NCH	
Sdr: 14%	-84 dB AGC NCH SQLC OFF FAST NCH	4 15 12 10
2018 2:35:09 PM Default Workspace	MUTE MED SLOW	2 Clear Enter

SETT.

SETT.

-100 -105

-110 -115

-120 -125

-130

-135

-140 -145

-150

SDRuno Screen Shot JT65 Signal & AWGN SP2 passband = 2500 Hz

- Receiver Noise Bandwidth = 2500 Hz
- $(S_{PB} + N_{PB}) = -114 \text{ dBm}$
 - Where $S_{PB} = -121 \text{ dBm}$ and $N_{PB} = -115 \text{ dBm}$
- N_{PB} ≈ 6 dB greater than S_{PB} as measured across a receiver noise bandwidth = 2500 Hz
- The signal and noise power measurement **within the 2500 Hz** Receiver Noise Bandwidth is no longer dominated by the received JT65 signal but now dominated by the noise
- SNR measured value $\approx 1.0 \text{ dB} (S_{PB} + N_{PB} = -114 \text{ dBm}, N_{PB} = -115 \text{ dBm})$
 - Where SNR = $(S_{PB} + N_{PB})/N_{PB}$, and dominated by N_{PB} as measured across a receiver noise bandwidth = 2500 Hz

SETT. MA SDRuno MAIN	SETT.	RDSW EXW	SDRui	no RX COI	NTROL	RSYN1	MCTR	TCTR	8-88	- X
OPT REC PANEL Final SR: 2000000 0 SP1 SP2 RX IFBW: 1.536MHz (ZIF)	DEEMPH	STEP: 500 Hz	<u>ال</u>	.07(5.0001	114.3 dBm	RMS	.ih	5 7 5 4 2	0 +40 +60
Gain: 79.1dB	MODE	AM SA		CWOR	DSB LSB	USB	DIGITAL	7=	8	9
DEL VRX	VFO A	A > B NF	M MFM	CWPK	1800 2200	NBW	NCH1	160	80	40
	VFO B	B > A WF	FM SWFM	ZAP	2800 3000	NBN	NCH2	4	<mark>5</mark> 20	6
IF Gain STOP	QMS	QMR		CWAFC	NR	NBOFF	NCH3		2	3
Sdr: 7%	-84 dB				AGC	FAST	NCH4	15	12	10
9/10/2018 3:13:45 PM Default Workspace	MUTE				MED	SLOW		0 2	Clear	Enter

SETT. -85 -90 dBm -95

-100 -105

-110 -115

-120 -125

-130 -135

-140 -145

-150

SP

13000

SDRuno Screen Shot JT65 Signal & AWGN Receiver Noise Bandwidth = 2500 Hz

- So why can we still see the FSK tones rise above the noise floor?
- Because the FSK signal energy is concentrated over a very small bandwidth of 2.692 Hz. The FSK tone detection BW = 2.692 Hz
- The signal energy in that small concentrated BW is much greater than the noise power over that detection bandwidth.
- You see, **if the FSK tone bandwidth was actually 2500 Hz** we would never see the signal. The signal energy would be spread out over the 2500 Hz receiver noise bandwidth and "buried in the weeds".
- It is the SNR within that FSK tone detection BW which determines the success or failure of demodulating and decoding an error-free JT65 message not the reported SNR referenced across the much wider 2500 Hz noise bandwidth

The Claim

As the receiver noise bandwidth decreases and approaches that of the actual detection bandwidth the SNR increases.

- I am going to change the SP2 receiver passband to 179 Hz the approximate transmission bandwidth of the JT65 signal
- Recall the JT65 transmission bandwidth encompasses the FSK sync tone and the 64 FSK message tones

SDRuno Screen Shot JT65 Signal & AWGN SP2 passband = 179 Hz

- Receiver Noise Bandwidth = 179 Hz
- N_{PB} is significantly reduced
- $(S_{PB} + N_{PB}) = -121 \text{ dBm}$
 - Where $S_{PB} = -121 \text{ dBm}$ and $N_{PB} = -127 \text{ dBm}$
- The signal and noise power measurement within the 179 Hz Receiver Noise Bandwidth is again dominated by the received JT65 signal
- SNR measured value ≈ 6 dB
 - SNR increased approx 5 dB, a factor of 3 times higher SNR

SETT. MA SDRuno MAIN	- X	SETT.	RDSW	EXW	SDRu	no RX CO	NTROL	[RSYN1	MCTR	TCTR	1-88	- X
OPT REC PANEL Final SR: 20 0 SP1 SP2 RX IFBW: 1.536MHz	000000 : (ZIF)	DEEMPH	STEP; 500 Hz		łЧ	.071	5.0(]() -12	21.1 dBm	RMS	. 	7 9 +2	0 +40 +60
Gain: 2 Gain: 2	79.1dB	MODE	AM	SAM	FM	CW	DSB	LSB	USB	DIGITAL			
	D VRX	VFO -	QM	FM M	ODE	CW OP	FIL	TER	NB	NOTCH	7	8	9
DE	L VRX	VFO A	A > B	NFM	MFM	CWPK	1800	2200	NBW	NCH1	160	80	40
SR (MHz) DEC LO	LOCK	VFO B	B > A	WFM	SWFM	ZAP	2800	3000	NBN	NCH2	4	5 <u>-</u> 20	6 17
		QMS	QMR			CWAFC		NR	NBOFF	NCH3	- 30	20	<u> </u>
IF Gain S	тор		<u> </u>							NCH4	1	2	30
Sdr: 8%		-84 dB						AGC			10	12	10
Sys: 10% ME	M PAN	SQLC						OFF	FAST	NCHL	0	l	l
9/10/2018 3:22:45 PM Default Workspa	ace	MUTE						MED	SLOW		2	Clear	Enter

SETT. -80

-100 -105

-110 -115

-120 -125

-130

-135

-140 -145

-150

SP

Close In on the Detection Bandwidth Receiver Noise Bandwidth = 9 Hz

- Now I am going to close in on the JT65 FSK sync tone and try to get as close to the detection bandwidth as possible
 - By reducing the receiver passband to something as close to that which approaches the 2.692 Hz detection bandwidth

SDRuno Screen Shot JT65 Signal & AWGN SP2 passband = 9 Hz

- Receiver Noise Bandwidth = 9 Hz
- N_{PB} is further significantly reduced
- $(S_{PB} + N_{PB}) = -121 \text{ dBm}$
 - Where $S_{PB} = -121 \text{ dBm}$ and $N_{PB} = -138 \text{ dBm}$
- The signal and noise power measurement within the 9 Hz Receiver Noise Bandwidth is again dominated by the received JT65 signal
- SNR measured value ≈ 17 dB
 - SNR increased by a factor of 40

- X

Final SR: 2000000

Gain: 79.1dB

ADD VRX

IFBW: 1.536MHz (ZIF)

D

SDRuno MAIN

REC PANEL

SETT. MA

OPT

0 SP1 SP2 RX

TCTR - C - X

1 3 5 7 9 +20 +40 +40

RSYN1 MCTR

RMS

DIGITAL

123.4 dBm

USB

SDRuno RX CONTROL

FM

76.000

DSB LSB

SETT. RDSW

DEEMPH STEP:

MODE

500 Hz

AM

EXW

SAM

So, what is the Real SNR that determines JT65, JT9, FT8 Message Decoding Performance?

- FSK Symbol to Noise Power Density Ratio (Es/No)
- (Es/No)_{dB} can be derived mathematically from the Reported SNR

(Es/No)_{dB} = (SNRreported)_{dB} + (10 x LOG (2500 Hz/ (FSK symbol detection BW))_{dB}

- JT65 FSK symbol detection BW = 2.692 Hz
- JT9 FSK symbol detection BW = 1.736 Hz
- FT8 FSK symbol detection BW = 6.25 Hz

HF Digital Communication Mode JT65

(Es/No)_{JT65 (dB)} = (SNRreported)_{JT65 (dB)} + (10 x LOG (2500 Hz/2.692 Hz))_(dB)

where:

1) 2500 Hz is the Reported SNR Noise bandwidth

2) 2.692 Hz is the actual JT65 signaling noise bandwidth also known as the JT65 FSK symbol detection bandwidth

(Es/No)_{JT65 (dB)} = (SNRreported) _{JT65 (dB)} + 29.7 dB

-

HF Digital Communication Mode JT9

(Es/No)_{JT9 (dB)} = (SNRreported)_{JT9 (dB)} + (10 x LOG (2500 Hz/1.736 Hz))_(dB)

where:

1) 2500 Hz is the Reported SNR Noise bandwidth

2) 1.736 Hz is the actual JT9 signaling noise bandwidth also known as the JT9 FSK symbol detection bandwidth

$(Es/No)_{JT9 (dB)} = (SNRreported)_{JT9 (dB)} + 31.6 dB$

-

HF Digital Communication Mode FT8

(Es/No)_{FT8 (dB)} = (SNRreported)_{FT8 (dB)} + (10 x LOG (2500 Hz/6.25 Hz))_(dB)

where:

1) 2500 Hz is the Reported SNR Noise bandwidth

2) 6.25 Hz is the actual FT8 signaling noise bandwidth also known as the FT8 FSK symbol detection bandwidth

$(Es/No)_{FT8 (dB)} = (SNRreported)_{FT8 (dB)} + 26 dB$

JT65, JT9, and FT8	FSK Symbol-to-No	oise Density Ratio	(Es/No) _{dB}	
c				
Reported SNR (dB)				SNR threshold referenced to a
over a 2500 Hz Noise				2500 Hz BW at a 50% probability for decoding a JT9 message in
Bandwidth	(Es/No) _{JT65 (dB)}	(Es/No) _{JT9 (dB)}	(Es/No) _{FT8 (dB)}	AWGN
-30	-0.3	1.6	-4	
-29	0.7	2.6	-3	
-28	1.7	3.6	-2	
-27	2.7	4.6	-1	SNR threshold referenced to a
-26	3.7	5.6	0	2500 Hz BW at a 50% probability for decoding a JT65 message in
-25	4.7	6.6	1	AWGN
-24	5.7	7.6	2	
-23	6.7	8.6	3	I
-22	7.7	9.6	4	
-21	8.7	10.6	5	SNR threshold referenced to a
-20	9.7	11.6	6	2500 Hz BW at a 50% probability for decoding a FT8 message in
-19	10.7	12.6	7	AWGN
-18	11.7	13.6	8	
-17	12.7	14.6	9	

- JT65, JT9 and FT8 SNR reports are referenced to a much wider noise bandwidth, 2500 Hz, than is required to successfully demodulate and decode the message
- The SNR associated with the FSK tone detection BW or signaling bandwidth is the real SNR and it is much larger than the reported SNR
- Our amateur radio receiver's ability to successfully demodulate/decode the signal of interest is all dependent upon the noise level that exists over the detection bandwidth – whether it is CW, Phone, BPSK31, etc.
- So why are the received signal reports based upon a 2500 Hz bandwidth?
 - SNR is reported for all amateur radio modes traditionally based on a receiver bandwidth of 2500 Hz
 - Because JT65, JT9 and FT8 digital HF communication modes are usually received with a normal SSB receiver, whose **IF filter is approximately 2500 Hz wide**

References

- Work the World with WSJT-X, Part 2: Codes, Modes, and Cooperative Software Development, Joe Taylor, K1JT; Steve Frankie, K9AN, and Bill Somerville, G4WJS, ARRL QST, November 2017, Volume 101, Number 11.
- Open Source Soft-Decision Decoder for the JT65 (63,12) Reed-Solomon Code, Steven J. Frankie, K9AN and Joseph H. Taylor, K1JT, QEX, May/June 2016.
- 3. Work the World with JT65 and JT9, Digital Communication via Amateur Radio, Steve Ford, WB8IMY, JT65 and JT9 Protocol Specifics, by Dr Joe Taylor, K1JT, pg 1-6, ARRL Inc, ISBN: 978-1-62595-043-7

=

Handout

- You are welcome to the handout which shows the real SNR for a given Reported SNR
- The real SNR is provided for JT65, JT9, and FT8
- The other side of the handout shows the algorithm used to derive the real SNR